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Abstract. FCA exhaustively uses the notion of cluster by grouping
attributes and objects and providing a solid algebraic structure to them
through the concept lattice. Our proposal explores how we can cluster
implications. This work opens a research line to study the knowledge
inside the clusters computed from the Duquenne-Guigues basis. Some
alternative measures to induce the clusters are analysed, taking into
account the information that directly appears in the appearance and the
semantics of the implications. This work also allows us to show the fcaR
package, which has the main methods of FCA and the Simplification
Logic. The paper ends with a motivation of the potential applications of
performing clustering on the implications.

1 Introduction

Formal Concept Analysis (FCA) has established itself at the theoretical level
and is increasingly used in real-life problems [6,7,33]. Our community explores
how to solve real problems in data science, machine learning, social network
analysis, etc. Solving problems from these areas and developing new tools could
be a way to open a window to researchers outside FCA.

Since the early eighties, when R. Wille and B. Ganter [16] developed For-
mal Concept Analysis, the community has been growing. The interest in the
use of this well-founded tool has increased considerably. The continuous devel-
opment of the theoretical foundations and generalisations of the classical frame-
work [3,4,13,24,28,30] and the enthusiasm of how to put in practice this
progress [6-8,18,33] have formed a solid community formally linked. However, as
U. Priss mentioned in [32], “FCA is widely unknown among information scien-
tists in the USA even though this technology has a significant potential for appli-
cations”. The community recognises that it is necessary an additional effort and
perhaps new tools to make FCA more appealing. Books about machine learn-
ing, big data, and data science, in general, have not included anything about
FCA, notwithstanding its powerful knowledge and its considerable potential in
applications.
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Developing new tools and libraries could be a valuable resource to open our
community. In this work, we present a library in the R language, named fcaR,
which implements of the most popular methods and algorithms in FCA. Here
we show how to extract interesting knowledge by computing implication clusters
from the Duquenne-Guigues basis to illustrate the benefits of such a tool. fcaR
vertebrates this proposal by introducing some code throughout the paper.

FCA is firmly based on the (bi)clustering of attributes and objects. The
Concept Lattice provides a formal structure of these clusters. Nevertheless, the
application of clustering to the set of implications has not been explored as far
as we know. In the following section, we briefly survey the relationship between
Clustering and FCA.

The first step in this paper is to propose several dissimilarity measures
between implications to cluster them in different ways. In some of these measures,
to compute the distance matrix between implications, we will use Simplification
Logic and its attribute closure operator, included in the package fcaR. From this
distance matrix, clusters of implications arise representing new knowledge. A K-
medoid algorithm, specifically the PAM algorithm [23], is used to compute each
cluster’s central implications and further generate the clusters of implications.

Since our starting point is the Duquenne-Guigues basis, we analyse the differ-
ent dissimilarity measures taking into account the pseudointents, the right-hand
side of the implications, and the closed sets computed from the pseudointents.
We end the paper with an experiment result and drawing up some potential
applications from the implication clustering.

The rest of the paper is organised as follows: in Sect. 2, we analyse how clus-
tering is used in FCA in the literature. The central notions of FCA and the fcaR
package are briefly outlined in Sect. 3. Section 4 shows the new research line pro-
posed in this work, along with its formulations and possible developments, also
defining the idea of implication dissimilarity in terms of distance functions and
how implication clustering is related to cluster pseudointents and their closures.
This proposal’s promising result is shown in Sect. 5, developing an experiment
centred on a dataset well-known in the machine learning community. Finally,
Sect. 6 presents some conclusions and future works.

2 Previous Works on FCA and Clustering

FCA carries out clustering of objects by itself. However, it is well-known that
the size of the concept lattice is possibly exponential with respect to the size of
the formal context, even for a small context. Diatta in [14] ensured that pattern
concepts [17] coincide with clusters associated with dissimilarity measures.

Beyond that, techniques based on clustering have been explored to group the
closest concepts. For instance, in [29], Melo et al. presented a tool to apply visual
analytics to cluster concepts using a K-means algorithm [27] to identify clusters.
Bocharov et al. [5] group the objects by the K-means algorithm and propose
modifying the Close-by-One algorithm for consensus clustering to reduce the
concept lattice. In [38], the authors compute attribute clusters using similarity
and dissimilarity functions to reduce the concept lattice.
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Stumme et al. [37] proposed Iceberg lattices as a clustering method of the
original lattice to reduce computing bases of association rules and their visuali-
sation. Kumar in [26] uses clustering to reduce the formal context and, therefore,
the number of association rules extracted from it.

Other authors have used FCA in a variety of approaches to detect objects
with similar properties. In [22], triclustering, based on FCA, was developed to
detect groups of objects with similar properties under similar conditions and
used it to develop recommender systems. Cigarran et al. have some interesting
works [7,9] applying FCA in Social Network Analysis to detect topics in Twitter.
These authors proved that FCA could solve real problems with better results
than classical techniques, generating clusters of topics less subject to cluster
granularity changes.

Other works deal with the idea of clustering association rules (in transactional
databases) to reduce the number of rules extracted [2,19,36]. These works do not
define rule dissimilarity as a function of each rule’s terms (items). Instead, they
define the dissimilarity between rules in terms of the sets of transactions sup-
porting each rule. Thus, the knowledge present in the rule clustering is explicitly
related to the database and cannot be abstracted from it.

3 Background and the fcaR package

Over the years, U. Priss has collected a list of the main FCA-based tools on its
website https://www.upriss.org.uk/fca/fca.html. We emphasise that the most
used for FCA are ConExp, ToscanalJ, Galicia, FcaStone, and some libraries
developed in C, Python, etc. In this work, we take the opportunity to present
the fcaR package! as a valuable tool to solve real problems and bring FCA closer
to other communities.

In the following, we briefly summarise the main concepts in Formal Concept
Analysis (FCA) we need for this work, showing with a running example how the
fcaR package is used. For more detailed reading about FCA, see [18].

Definition 1 (Formal Context). A formal context is a triplet K := (G, M, I)
where G and M are non-empty finite sets and I C G x M is a binary relation
between G and M.

The elements in G and M are named objects and attributes, respectively. In
addition, (g, m) € I is read as the object g has the attribute m.

Ezample 1. We consider this example appearing in [18] where G is the set of
planets and M the set of some properties of these planets (Table 1).

In the R language, we will use the following to introduce this matrix with
the name planets in the fc_planets formal context object. The sets G and

1 As far as we know, no package using the R language has been developed and pub-
lished in CRAN repository for FCA, even when the R language together with Python
are considered the main languages in data science, machine learning, big data, etc.
To this date, fcaR has more than 8,000 downloads.
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Table 1. Properties of the planets of the solar system.

Small | Medium | Large | Near | Far | Moon | No_moon
Mercury | x X X
Venus X X X
Earth X X X
Mars X X X
Jupiter X | X
Saturn X | X
Uranus X | x
Neptune X | X
Pluto X X | X

M, and also subsequently computed concepts and implications, are stored inside
this formal context object?.

> library(fcaR)

> fc_planets <- FormalContext$new(planets)

> fc_planets$attributes

[1] "small" "medium" "large" "near" "far" "moon" "no_moon"
> fc_planets$objects

[1] "Mercury" "Venus" "Earth" "Mars" "Jupiter" "Saturn" "Uranus"
"Neptune" "Pluto"

Each formal context K defines two derivation operators, which form a Galois
connection between (2¢,C) and (2™, C). They are the following:

()29 — 2™ where A’ = {m € M | (g,m) € I for all g € A}.
(—=):2M — 2¢ where B’ = {g € G | (g,m) € I for all m € B}.

Ezxample 2. In fcaR we use sparse matrices and sparse sets to provide efficiency
to the algorithms, then to use an object variable or an attribute variable, first
we create a new sparse variable (SparseSet$new method), and then we assign
the value 1 (variable$assign method). To compute intent and extent in R
language, with the planets example, we will do the following:

# The planets are stored in a vector

myPlanets <- c("Earth","Mars")

# A new sparse object variable is created

mySparsePlanets <- SparseSet$new(attributes = fc_planets$objects)
# Assigning to myPlanets the value 1 in the variable sparse
mySparsePlanets$assign(myPlanets,values = 1)

# The content of the sparse variable is

mySparsePlanets

V V V V V V VYV

2 In this work, we do not use all the methods in the fcaR package to manage the
formal context, the concept lattice, the concepts, the implications, etc. See https://
neuroimaginador.github.io/fcaR/ for more details.
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{Earth, Mars}
> fc_planets$intent (mySparsePlanets) # Computing the intent
{small, near, moon}

In a similar way for attributes

myAttributes <- c("medium", "far",'"moon")

mySparseAttributes <- SparseSet$new(attributes = fc_planets$attributes)
mySparseAttributes$assign(myAttributes,values = 1)

mySparseAttributes

{medium, far, moon}

> fc_planets$extent (mySparseAttributes)

{Uranus, Neptune}

V V V V %

The main aim of this area is to extract knowledge from the context allowing
to reason. One of the ways to represent knowledge is utilising the concept lattice.
Another equivalent alternative knowledge representation, more suitable to define
reasoning methods, is given in terms of attribute implications.

Definition 2 (Attribute Implication). Given a formal context K, an

attribute implication is an expression A — B where A, B C M and we say
that A — B holds in K whenever B’ C A’.

That is, A — B holds in K if every object that has all the attributes in A also
has all the attributes in B. The closeness of these expressions with propositional
logic formulas leads to a logical style way to manage them. Although the most
used syntactic inference system is the so-called Armstrong’s Axioms, we will use
the Simplification Logic, SL, introduced in [10]. This logic allows the design of
automated reasoning methods [10-12,31] and it is guided by the idea of simplify-
ing the set of implications by efficiently removing redundant attributes. In [31],
the results and proofs about SIL are presented.

Ezample 3. We use the fcaR package to extract the set of implications from the
formal context in Example 1, by using the Next_Closure algorithm [16], using
the command fc_planets$find_implications(). The set of implications is

I' = { {no_moon} = {small, near}
{far} = {moon}
{near} = {small}
{large} = {far, moon}
{medium} = {far, moon}
{medium, large, far, moon} = {small, near, no_moon}
{small, near, moon, no-moon} = {medium, large, far}
{small, near, far, moon} = {medium, large, no_moon}
{small, large, far, moon} = {medium, near, no_moon}

{small, medium, far, moon} = {large, near, no_moon}}
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An interesting argument of the find_implications() function, when the num-
ber of implications is large, is parallelize to take advantage of the cores in the
machine. The functions size, cardinality can be applied to the imps variable
to check the number of implications and the size of the attributes on them. The
package eases the manipulation of implications using the typical operations of
subsetting in R language (imp[2:3], for instance).

To conclude this section, we introduce the outstanding notion of closure of a
set of attributes with respect to a set of implications, which is strongly related to
the syntactic treatment of implications. Note that the algorithms developed in
fcaR package to manipulate implications and to compute closures are based on
Simplification Logic [31]. For a set of implications, apply_rules and closure
functions can be respectively applied to remove redundancy and to compute
the closures of attributes®. We make clear that the results in this paper are
independent of the closure algorithm used.

Definition 3. Given I' C L and X C M, the (syntactic) closure of X with
respect to I' is the largest subset of M, denoted le, such that I' - X — le.

The mapping (—)}: 2™ — 2M is a closure operator on (2™, C). This notion is
the key to designing automatic reasoning methods due to the following equiva-
lence:

'-A—B if {g—>Alul'+te—B iff BCAf

From now on, we omit the subindex (i.e. we write X*) when no confusion
arises.

Example 4. We will use the following to compute the closure of the attribute
named small in Example 1 using our fcaR package:

> S <- SparseSet$new(attributes = fc_planets$attributes)
> S$assign("small"=1)

> imps$closure(S)

{small, far, moon}

4 Proposed Research Line

In this section, we propose a new research line accompanied by preliminary
results. In this line, we aim to study the potential use and applications of per-
forming (unsupervised) clustering on the Duquenne-Guigues basis of implica-
tions. We present this idea using a running example, and we have used the fcaR
package to help automate the computations and perform experiments.

Given a formal context K = (G, M, I), and a set of valid implications I", we
can interpret I" as a partition (disjoint by definition), i.e., I' = ITUILU. .. UTk,
where each set I is called a cluster of implications, and it is defined such that

K
o(I,.... Tx) :Za(n)

3 See https://neuroimaginador.github.io/fcaR /articles/implications.html.
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is minimum, where (1) represents an internal dissimilarity measure in I';. Thus,
our motivation is to group similar implications in the same cluster, building
homogeneous groups of implications.

In a similar way to classical clustering techniques, §(I;) can be defined in
terms of the distances between implications in the same cluster ;. Therefore, we
propose defining a distance function between implications that can adequately
capture and differentiate the essential aspects of their appearance and semantics.
Thus, given two implications P — @ and R — T from the Duquenne-Guigues
basis, we propose to quantify their different appearance by measuring the dis-
similarity between P and R and/or between @ and T. Their possibly different
semantic information can be quantified by comparing their syntactic attribute
closures Pt and R*. Our intuition is that the pseudo-intents and the closed sets
play an essential role in the clusters, but we want to explore the possibilities.

In order to measure the (dis)similarity between two sets of attributes, we can
consider several options. Let us suppose A, B C M. The following measures are
based on well-known distances:

— Hamming (or Manhattan) distance [20]: dm(A4,B) = |AAB| (where A
denotes the symmetric set difference operator) measures the amount of
attributes that are present in only one of A and B.

— Jaccard index [21]: dj(4,B) = 1— I‘:Gg} measures the proportion of common
attributes in A and B. anE)

— Cosine distance: deos(A,B) =1 — WO
Thus, the dissimilarity dis(P — @Q, R — T') between two implications P — Q

and R — T, following the previous comment, can be defined in terms of d(P, R),

d(Q,T) and d(P*, RT), where d is any of dyp, dj or deos. The use of one or another

of these terms is subject to the interpretation and could partially depend on the

problem to solve.
Initially, we aim at studying these different possibilities:

dis;(P - Q,R—T) :=d(P.
disg(P— Q,R—T) :=d(
diss(P - Q,R—T):=d(P,R
disy(P — Q,R—T) :=d(P

( ) :=d(P,

diss(P — Q,R—1T) :=d
Remember that d(P,R) is a term that quantifies the difference between the
pseudointents forming the left-hand sides of the corresponding implications and
that d(P*, R") measures the difference in the closed sets that are produced
by using the implications. Pseudointents and closed sets represent two levels in
the biclustering of the formal context. Therefore it is reasonable to think about
clustering the implications by using those distinctive components.

Once all the pairwise distances are computed, we can use a clustering algo-
rithm to generate the implication clusters. For each cluster, we determine an
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implication, named central implication, P — @, providing the measure of inter-
nal dissimilarity in the cluster as follows:
1
§(I) == Y. dis(P—QR—T)

|73l R—TET;

which can be interpreted as a measure of within I dispersion.

The clustering algorithm should provide a proper partition of I' such that
o(I1,..., k) is minimum. Another characteristic of clustering is that each
implication R — T is assigned to a cluster I5 if, by definition, its dissimilar-
ity to the central implication of I'; (which we will call P; — @;) is lower than its
dissimilarity to the central implications of the other clusters, that is, if

dis(P; — Qi,R—T) <dis(P; = Q;,R—T) Vj#i

Given the definition of dissimilarity above, the proposed clustering aims at
building coherent groups of implications that have similar pseudointents or pro-
duce similar closed sets.

There are many possible choices of clustering algorithms. In this paper, we
propose the use of the PAM (partitioning around medoids) algorithm [23] to
compute the clusters and their central implications, which, in this context are
called the medoids of the clusters, since it is more robust to the presence of noise
and isolated components in the data than the K-means algorithm [27], widely
used in machine learning.

Ezxample 5. Following our running example, we will find clusters in the implica-
tions of Example 3. And, for instance, we consider the dissimilarity function

dis(P — Q,R — T) := |PAR| + |PTARY| (1)

The next R code computes the dissimilarity matrix, that is, the matrix D =
(D;,j) where the entry D;; := diss(P; — @Q;,P; — Q;) is the dissimilarity
between the ith and the jth implications.

> diss <- implication_distance (imps)
> D <- as.matrix(diss)

>D

1 2 345 6 78 910
1 07 388 9 79 9 9
2 7 0 633 8108 8 8
3 3 6 07710 88 10 10
4 8 3 704 7 99 7 9
5 8 3 740 7 99 9 7
6 9 81077 0 64 2 2
7 710 899 6 02 4 4
8 9 8 899 4 20 2 2
9 9 81079 2 42 0 2
109 81097 2 42 2 0
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Then, we use the PAM algorithm of the cluster R package to compute the
clusters using K = 2 (two clusters) and their central implications.

> cluster <- cluster::pam(diss, k = 2)

> # The following are the central implications

> imps[cluster$id.med]

Implication set with 2 implicatioms.

Rule 1: {far} -> {moon}

Rule 2: {small, near, far, moon} -> {medium, large, no_moon}

Therefore, we already have the implications in each cluster:

> imps[cluster$clustering == 1]

Implication set with 5 implicationms.

Rule 1: {no_moon} -> {small, near}

Rule 2: {far} -> {moon}

Rule 3: {near} -> {small}

Rule 4: {large} -> {far, moon}

Rule 5: {medium} -> {far, moon}

> imps[cluster$clustering == 2]

Implication set with 5 implications.

Rule 1: {medium, large, far, moon} -> {small, near, no_moon}

Rule 2: {small, near, moon, no_moon} -> {medium, large, far}
Rule 3: {small, near, far, moon} -> {medium, large, no_moon}
Rule 4: {small, large, far, moon} -> {medium, near, no_moon}
Rule 5: {small, medium, far, moon} -> {large, near, no_moon}

Note that the second cluster is formed by implications that present all the
attributes. This cluster can be disregarded as uninformative since its implications
present combinations of attributes that are not found in any object of the formal
context. In terms of association rules, they would be considered as implications
with zero-support and not interesting for our proposal. Thus, in what follows,
we will consider only implications that do not present all attributes.

# Take the first 5 implications

imps <- imps[1:5]

diss <- implication_dist(imps)

D <- as.matrix(diss)

rownames (D) <- seq(imps$cardinality())

D
1 2
0 10

V V. V V V VvV

4 5
12 12
10 0 4 4

4 8 10 10
12 410 0 4
12 410 4 O

O W N
O 0w

Furthermore, for these implications, the computation of the clusters produces
the following clusters:

> cluster <- cluster::pam(diss, k = 2)
> # The central implications
> imps[cluster$id.med]
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Implication set with 2 implicatioms.
Rule 1: {near} -> {small}

Rule 2: {far} -> {moon}

> # The cluster 1 is:

> imps[cluster$clustering == 1]
Implication set with 2 implicatioms.
Rule 1: {no_moon} -> {small, near}
Rule 2: {near} -> {small}

> # The cluster 2 is:

> imps[cluster$clustering == 2]
Implication set with 3 implicatioms.
Rule 1: {far} -> {moon}

Rule 2: {large} -> {far, moon}

Rule 3: {medium} -> {far, moon}

The computed clustering can be viewed as the result of minimising the clus-
tering algorithm’s objective function. It will be minimum the mean dissimilarity
of each implication in its cluster with respect to its central implication.

As a conclusion, we can observe that the clustering renders a natural result
describing the clusters as a set of implications with specific knowledge about:

1. Planets near the Sun which are therefore small.
2. Distant planets that, therefore, have satellites.

Now, we approach to experiment what happens when we change the dissim-
ilarity function to:
dis(P - Q,R—T) := |PAR| (2)

that is, when we consider only the difference in the pseudointents. Similarly, we
compute the new dissimilarity matrix and obtain:

> D_LHS

1 2 3 4 5
1 0 2 2 2 2
2 2 0 2 2 2
3 2 2 0 2 2
4 2 2 2 0 2
5 2 2 2 2 0

We can observe that any two implications are at distance 2. The consequence
is that the clusters will be uninformative. Any possible partition into two clusters
Iy and I5, using this dissimilarity matrix, has the same mean dissimilarity;
therefore, clusters can be considered as generated by randomness. We can check
the central implications:

> clusterLHS <- cluster::pam(dissLHS, k = 2)
> # The central implications

> imps[clusterLHS$id.med]

Implication set with 2 implicationms.

Rule 1: {large} -> {far, moon}

Rule 2: {medium} -> {far, moon}



148 D. Lépez-Rodriguez et al.

Note the overlap in the closed sets defined by these central implications. In
this case, the implications in the first cluster and the unique implication in the
second cluster (that is also its central implication) does not provide any further
insight, making it clear that, in this case, the clusters are random guesses.

# First cluster - Implication set with 4 implicationms.
Rule 1: {no_moon} -> {small, near}

Rule 2: {far} -> {moon}

Rule 3: {near} -> {small}

Rule 4: {large} -> {far, moon}

# Second cluster - Implication set with 1 implications.
Rule 1: {medium} -> {far, moon}

It seems clear that to consider the dissimilarity measure proposed in Eq. (1),
representing the difference in the knowledge provided by pseudo-intents and
closed sets, is more appropriate than the proposed in Eq. (2), representing only
the differences in the pseudointents.

To conclude this section, we explain the line of research we have in mind.
The clustering relationship on implications to object and attribute clustering or
to concept clustering seems to be interesting. We devise potential future appli-
cations in reducing the computational cost of computing closures in specific sce-
narios or the possible application to FCA’s factorisation techniques. Also, it will
be of interest to study the different properties of implication clustering when
performed on different types of bases (direct-optimal [34] and ordered-direct
bases [1] and sets of implications without attribute redundancies, for instance).
Last, it will be of interest to extend the study to determine the properties of
clustering of association rules with this new proposal, in contrast to what has
already been studied [2,19,36].

5 Experimental Results

This section presents results to illustrate how the obtained clustering of impli-
cations is consistent with the formal context’s observed data.

We apply our proposal to the data from the so-called MONK’s problems [15],
a well-known set of 3 datasets used in machine learning competitions. Each of
the 3 datasets consists of 6 categorical attributes, al to a6, taking integer values,
and a binary class attribute. For this work, all categorical variables have been
binarized, making an aggregate of 19 binary attributes, including the two class
attributes, class = 0 and class = 1.

For each of these three problems, we have computed the Duquenne-Guigues
basis, consisting of 524, 723 and 489 implications, respectively. After removing
the implications that incorporate all the attributes, as commented before, the
final sets of implications consisted of 505, 704 and 471 implications for problems
MONKS-1, MONKS-2 and MONKS-3, respectively.

Then, we apply a dissimilarity function (one of disy,...,diss, or any other
combination) to obtain a dissimilarity matrix. To determine the optimal number
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Fig. 1. Bi-dimensional representation of the implication space. Each dot represents an
implication. In order to obtain this plot, the multidimensional scaling technique has
been used to map implications to R? points, preserving their mutual dissimilarities.

of clusters present in the implication set, we use the silhouette index [35]. In all
these problems, the optimal number of clusters determined by this index was 2.

Thus, to continue with our proposal, for each problem we have applied the
method to partition the implication set into two clusters. For instance, if we
use the dissimilarity function diss, which incorporated the distance between the
pseudointents and between the closures, with the Hamming distance, on the
MONKS-1 problem, we obtain the following central implications:

{a5 =1} = {class = 1}
{class =0, a2 =1, ab = 2} = {a6 = 2}

The clustering results can be visually inspected by applying an algorithm of
multidimensional scaling [25], whose results can be plotted to obtain a graphical
bi-dimensional representation of the implications space. This plot can also be
used to inspect the potential number of clusters present in the implications. The
results of the clustering can be checked in Fig. 1.

In that Fig. 1, we can check that 2 clusters seem to be a good proposal. The
clustering algorithm has almost correctly identified the two implication groups,
confirming the estimated value using the silhouette index.

We have explored the consistency of the clustering performed using the dif-
ferent measures of dissimilarity. proposed in Sect.4 (disy,...,diss), based on
different distance functions (Hamming, Jaccard and Cosine indexes).

First, we study if the implications leading to the same closed set are grouped
in the same cluster. Thus, we introduce the notion of closure purity. Let us
consider the set of equivalence classes in the Duquenne-Guigues basis I, as

[P—-Q={R—Tecl:P"=R"}

Two implications belong to the same equivalence class if the closures of their
respective pseudointents are the same. Then, we can define closure purity as the
proportion of those equivalence classes whose implications are all assigned to the
same cluster. The ideal situation is that this index equals 1, meaning that whole
equivalence classes form clusters.
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Table 2. Closure purity for different dissimilarity measures and distance functions.

Problem | Dissimilarity | Hamming | Jaccard | Cosine
MONKS-1 | disy 0.953 1.000 0.983
diso 1.000 1.000 1.000
diss 0.962 0.953 0.953
diss 1.000 1.000 0.971
diss 1.000 0.988 0.962
MONKS-2 | disy 0.928 0.966 0.942
dis2 1.000 1.000 1.000
diss 0.986 0.966 0.974
diss 0.994 1.000 0.998
diss 0.996 0.954 0.974
MONKS-3 | dis; 0.923 1.000 0.972
dis2 1.000 1.000 1.000
dis3 0.935 0.985 0.978
disa 1.000 0.997 0.994
diss 1.000 0.994 0.966

The results of this comparison are presented in Table2. It is evident that
diso achieves closure purity equal to 1 since it is defined as the dissimilarity
between the closures given by two implications. Thus, any two implications in
the same equivalence class have dissimilarity 0 and therefore are assigned to
the same cluster. Interestingly, other dissimilarity measures, such as dis4, taking
into account also the difference in the pseudointents, in many occasions achieve
closure purity equal to 1, meaning that they can also separate the equivalence
classes coherently.

Also, we study if there are common attributes inside the implications in a
given cluster. Table 3 shows the attributes that appear in at least 80% of the
implications in each cluster. Note that there is always a cluster with no common
attributes using both Jaccard and Cosine indexes, indicating greater heterogene-
ity in that cluster’s implications. With the Hamming distance, we obtain that the
dissimilarity measures dis, (considering only P+ and RT) and dis, (considering,
besides, the difference between pseudointents) always find common attributes in
each cluster. Remarkably, the common attributes found are the class attributes
mentioned earlier. Hence, the clustering procedure has been able to locate key
attributes in a completely unsupervised manner, provided the knowledge present
in the implication set. It is evident that if we reduce the threshold to be less
than 80%, we will find a greater number of common attributes. We have used a
threshold of 80% to retain just representative attributes in each cluster.
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Table 3. Sets of common attributes in each of the clusters found for different distance
functions and dissimilarity measures. A @ symbol indicates that no common attributes
are found in the implications of the given cluster.

Problem | Diss. | Hamming Jaccard Cosine
Cluster 1 | Cluster 2 | Cluster 1 Cluster 2 | Cluster 1 Cluster 2
MONKS-1 | dis; | {class =1} | @ {class =1, a5 = 1} 2} {class =1, ab = 1} @
disy | {class = 1} | {class = 0} | {class = 1, ab = 1} (] {class = 1, ab = 1} @
disg | {class =1} | @& {class = 1} ] {class = 1} <]
diss | {class = 1} | {class = 0} | {class =1, a5 =1} 1] {class = 1} 2]
diss | {class = 1} | {class = 0} | {class = 1} 1] {class = 1} ]
MONKS-2 | dis; | @ @ {ab=1} 2} {ad =1} 2]
disy | {class = 0} | {class = 1} | {class = 0, a6 = 1} @ {class =0,ab =1, a6 = 1} &
disz | {class =0} | & {class = 0} 1] {class = 0} 2]
disy | {class =0} | {class =1} {class=0,a4=1,a6=1} & {class = 0} 2]
diss | {class =0} | @ {class = 0} 1] {class = 0} 2]
MONKS-3 | dis; | @ {class = 1} | {class = 0, ab = 4} @ {class = 0, ab = 4} @
disy | {class = 0} | {class = 1} | {class = 0, ab = 4} @ {class = 0, ab = 4} @
disz | {class =0} | & {class = 0} 1] {class = 0} 1]
diss | {class = 0} | {class = 1} | {class = 0} 1] {class = 0} 2]
diss | {class = 0} | {class = 1} | {class = 0} 1] {class = 0} 2]

This leads us to think that implication clustering could be used with promis-
ing results in classification tasks in datasets, and/or, for instance, in recom-
mender systems for medical diagnosis in which some attributes play the role of
identifying diseases from symptoms (the rest of the attributes). To finish this
section, it seems clear that very compelling results are emerging from the hidden
knowledge in the clusters of implications.

6 Conclusions

We have presented the fcaR package developed in the R language throughout
this work. The package has two objectives. The first one is to provide a tool
to the FCA community and make FCA works visible to other areas as machine
learning, data science, etc., where the use of the R language is widely extended.
Thus, in this line, to promote the so-called reproducible research and the sharing
of knowledge, the scripts to replicate the results in this work, as well as the
results themselves, are hosted in https://github.com/Malaga-FCA-group/FCA-
ImplicationClustering.

From the theoretical point of view, the paper proposes a method to cluster
implications, hence extracting interesting knowledge about the central implica-
tions, which reveal groups of objects with a special meaning and shared char-
acteristics. This work opens the windows to new interesting research in current
areas of interest as Social Network Analysis. The identification of topics could
be addressed by our clustering implication method based on logic.

Natural clusters (consistent with the data) seem to emerge from the impli-
cation clusters, and this could have potential applications to reduce the concept
lattice, the bases of implications, etc. Key attributes arise from the clusters, with
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potential applications revealing attributes and object clusters and their leaders.
It could also be of interest to study the relationship between the concept lattice
obtained directly from a formal context and obtained after clustering objects.
The study of closure purity can reveal interesting properties about closed sets
and their features.
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