fcaR, Formal Concept Analysis with the R language

Motivation, success stories and future work with the fcaR library

Domingo López-Rodríguez

Department of Applied Mathematics Universidad de Málaga

Personal homepage: https://dominlopez.netlify.app fcaR homepage: https://malaga-fca-group.github.io/fcaR

Motivation

Why to develop an R package for FCA?

- R, together with Python, are the two most widely used programming languages in Machine Learning and Data Science.
- In R there are already libraries for association rule mining that have become standard: arules.
- There is no library in R that implements the basic ideas and functions of FCA and allows them to be used in other contexts.

Our purpose

- To help disseminate FCA as a knowledge discovery tool.
- To be able to perform rapid testing of new ideas, algorithms, etc., both from a theoretical and practical point of view.
- Rapid prototyping of new solutions that can be integrated into more complex computational systems.
- To enable the application of FCA to real problems: automatic reasoning and recommender systems.

Design principles

Usability

- Direct execution of most classical algorithms (even in the fuzzy setting).
- Provide methods to operate on contexts, concept lattice and implications.
- **Logic**: include the SL_{FD} logic to compute closure wrt implication sets.
- Interoperability:
 - Read/write datasets in various formats (CSV, CTX, ...).
 - Import and export to arules.
- Allow reproducible research.
- Provide lots of documentation with examples.

Implementation

- Modern programming paradigms (object-oriented).
- Classes representing entities: contexts, lattices, implications...
- Allow for extensions: new algorithms, new ideas. . .
- Use base R for the interface, but bottlenecks implemented in C.

The **fcaR** library

Library availability

Contributed Packages

Available Packages

Currently, the CRAN package repository features 18994 available packages.

The package is in a stable phase in a repository on Github and on CRAN.

- Unit tests
- Vignettes with demos
- Status:

• lifecycle: stable

CRAN version: 1.1.1

• downloads: ~22K

Classes and methods

Classes

Class name	Use
"Set"	A basic class to store a fuzzy set using sparse matrices
"Concept"	A pair of sets (extent, intent) forming a concept for a given formal context
"ConceptLattice"	A set of concepts with their hierarchical relationship. It provides methods to compute notable elements, sublattices and plot the lattice graph
"ImplicationSet"	A set of implications, with functions to apply logic and compute closure of attribute sets
"FormalContext"	It stores a formal context, given by a table, and provides functions to use derivation operators, simplify the context, compute the concept lattice and the Duquenne-Guigues basis of implications

Table 1: Main classes found in fcaR.

Main methods

Formal Contexts

intent
extent
closure
clarify
reduce
standardize
find_concepts
find_implications

Concept Lattice

supremum
infimum
sublattice
meet_irreducibles
join_irreducibles
subconcepts
superconcepts
lower_neighbours
upper_neighbours

Implication Set

closure
recommend
apply_rules
to_basis

Fuzzy extension

Let $\mathbb{K}=(G,M,I)$ be a formal context and $\mathbb{L}=\langle L,\wedge,\vee,\otimes,\rightarrow,0,1\rangle$ a complete residuated lattice, and define the operators $\uparrow:L^G\to L^M$, $\downarrow:L^M\to L^G$ as:

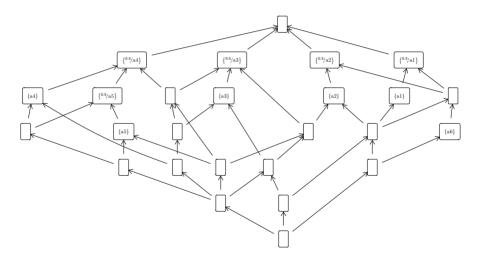
$$egin{aligned} A^{\uparrow}(m) &:= igwedge_{g \in G} (A(g)
ightarrow I(g,m)) \ B^{\downarrow}(g) &:= igwedge_{G} (B(m)
ightarrow I(g,m)) \end{aligned}$$

This operators form a Galois connection, which allow us to study the associated closure system by means of the concept lattice and of the basis of implications.

 $m \in M$

Sample of use in fuzzy setting

	a1	a2	a3	a4	a5	аб
o1	0	1	1/2	1/2	1	0
o2	1	1	1	0	0	0
о3	$\frac{1}{2}$	$1/_{2}$	0	0	0	1
o4	0	0	0	1	$1/_{2}$	0
о5	0	0	1	$1/_{2}$	0	0
o6	1/2	0	0	0	0	0


Table 2: Fuzzy (graded) formal context named "fc".

With a fuzzy formal context we can perform the most common operations in FCA, as mentioned before.

```
# This finds the entire set of concepts
# and the canonical basis of implications.
fc$find_implications()
```

Concept lattice

fc\$concepts\$plot(to_latex = TRUE)

Basis of implications

fc\$implications

```
\begin{cases}
0.5/a6 \\
0.5/a5 \\
0.5/a4
\end{cases}
\Rightarrow
\begin{cases}
0.5/a4 \\
0.5/a4
\end{cases}

\begin{cases}
0.5/a3, 0.5/a4, 0.5/a5 \\
0.5/a3, a4
\end{cases}
\Rightarrow
\begin{cases}
a2, a5 \\
a3 \\
0.5/a2, 0.5/a4
\end{cases}
\Rightarrow
\begin{cases}
a2, 0.5/a3, a5
\end{cases}

\begin{cases}
0.5/a2, 0.5/a4 \\
0.5/a2, 0.5/a3
\end{cases}
\Rightarrow
\begin{cases}
a2 \\
a2 \\
a3 \\
a2 \\
a3 \\
a3 \\
a5 \\
a4
\end{cases}
\Rightarrow
\begin{cases}
a4 \\
a5 \\
a1, a2, a3 \\
a3 \\
a6 \\
a6
\end{cases}
\Rightarrow
\begin{cases}
a1 \\
a2
\end{cases}
\Rightarrow
\begin{cases}
a1 \\
a2
\end{cases}
\Rightarrow
\begin{cases}
a2
\end{cases}

         6:
         8:
 10:
11:
12:
                                                                                                                                                                                                                                                                                                               {a4, a5}
```

A remark on the Simplification Logic

SL_{FD}	Equivalence rules
[Ref] $\frac{A \supseteq B}{A \Rightarrow B}$	
$[Frag] \frac{A \Rightarrow B \cup C}{A \Rightarrow B}$	$\{A\Rightarrow B\}\equiv\{A\Rightarrow B\smallsetminus A\}$
$[Comp] \frac{A \Rightarrow B, C \Rightarrow D}{A \cup C \Rightarrow B \cup D}$	$\{A\Rightarrow B, A\Rightarrow C\}\equiv \{A\Rightarrow BC\}$
[Simp] $\frac{A \Rightarrow B, C \Rightarrow D}{A(C \setminus B) \Rightarrow D \setminus B}$	$A \subseteq C \Rightarrow \{A \Rightarrow B, C \Rightarrow D\} \equiv \{A \Rightarrow B, A(C \setminus B) \Rightarrow D \setminus B\}$
	$A \subseteq D \to \{A \Rightarrow B, C \Rightarrow BD\} \equiv \{A \Rightarrow B, C \Rightarrow D\}$

The SL_{FD} closure algorithm makes use of the above equivalence rules to compute the closure X^+ of a set X using a set of implications Σ , and return a simplified Σ' where the attributes in X^+ do not appear, and such that:

$$\{\varnothing \Rightarrow X\} \cup \Sigma \equiv \{\varnothing \Rightarrow X^+\} \cup \Sigma'$$

Use as a recommendation system

A conversational recommender system for diagnosis using fuzzy rules

P. Cordero^a, M. Enciso^b, D. López^{a,*}, A. Mora^a

* Dept. of Applied Mathematics, Universidad de Málaga, Andalucía Tech, Málaga, Spain
b Dept. of Computer Science, Universidad de Málaga, Andalucía Tech, Málaga, Spain

The purpose is to use logic tools to build a conversational recommendation system from a fuzzy dataset such as this:

COSAS_1	COSAS_2	COSAS_3	FICAL_1	FICAL_2	FICAL_3	dx_ss	dx_other
extreme absent absent moderate absent	moderate absent absent extreme absent	absent absent absent moderate moderate	absent extreme absent m/ severe absent	absent m/ severe absent mild absent	absent m/ severe absent absent absent	extreme absent extreme extreme absent	absent extreme absent absent extreme
absent	absent	absent	absent	absent	absent	absent	extreme

Preprocessing steps

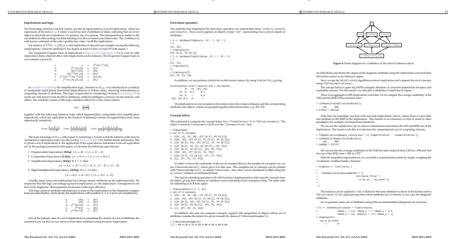
• Scale the context to a graded dataset:

	COSAS_1	COSAS_2	COSAS_3	FICAL_1	FICAL_2	FICAL_3	dx_ss	dx_other
01	1	1/2	0	0	0	0	1	0
O2	0	0	0	1	2/3	2/3	0	1
О3	0	0	0	0	0	0	1	0
04	1/2	1	1/2	2/3	1/3	0	1	0
O5	0	0	1/2	0	0	0	0	1
O6	0	0	0	0	0	0	0	1

Table 3: Scaled context.

• Use the tools in the package (the NextClosure algorithm, mainly) to build the Duquenne-Guigues basis of implications.

Conversation


- 1. The system asks the user to provide a symptom and a degree associated with it: $\{d_x/x\}$ where $x \in M$ and $d_x \in L$.
- 2. It computes the closure $\{d_x/x\}_{\Sigma}^+$ and its associated reduced set of implications Σ' .
- 3. If the closure contains an attribute identifying a disease, then a diagnosis has been produced. The system stops the process and provides the disease as the recommendation.
- 4. Optional step: the user has the possibility to give feedback about the closure, updating the degree of any symptom.
- 5. If the user declines to provide a feedback, agreeing with the information provided, then new symptoms (in the LHS of Σ') have to be introduced to continue with the conversation, going to Step 1.

Results

	Accuracy	Sensitivity	Specificity	Precision
ALS	0.360	0.333	0.380	0.290
IBCF (Cosine)	0.555	0.475	0.615	0.483
IBCF (Pearson)	0.770	0.466	1.000	1.000
LIBMF	0.491	0.901	0.181	0.455
SVD	0.376	0.515	0.271	0.349
SVDF	0.431	1.000	0.000	0.431
UBCF (Cosine)	0.608	0.967	0.335	0.524
UBCF (Pearson)	0.525	0.783	0.330	0.470
C5.0	0.674	0.636	1.000	1.000
PART	0.883	0.847	0.950	0.970
JRip	0.752	0.814	0.688	0.731
Random Forest	0.953	0.924	1.000	1.000
xgboost	0.818	0.963	0.713	0.706
k-nn	0.589	0.603	0.544	0.815
Proposal	0.982	0.996	0.948	0.955

Reproducible research with fcaR and interoperability

All classes have a to_latex() method to export in a suitable form to a LATEX document. **fcaR** code can be embedded in RMD files (plain text + code + results) and produce a presentation (such as this one!) or a complete paper:

Where to find help

https://malaga-fca-group.github.io/fcaR/

fcaR: Tools for Formal Concept Analysis

The aim of this package is to provide tools to perform fuzzy formal concept analysis (FCA) from within R. It provides functions to load and save a Formal Context, extract its concept lattice and implications. In addition, one can use the implications to compute semantic closures of fuzzy sets and; thus, build recommendation systems.

Stories of success

Where *else* have we used **fcaR**?

Minimal generators from positive and negative attributes: analysing the knowledge space of a maths course

Article

Simplifying Implications with Positive and Negative Attributes: A Logic-Based Approach

Francisco Pérez-Gámez ⁽⁰⁾, Domingo López-Rodríguez ⁽⁰⁾, Pablo Cordero ⁽⁰⁾, Ángel Mora ⁽⁰⁾ and Manuel Ojeda-Aciego *⁽⁰⁾

Departamento Matemática Aplicada, Universidad de Málaga, 29071 Málaga, Spain; franciscoperezgamez@uma.es (P.C.); dominlopez@uma.es (D.-L.R.); pcordero@uma.es (P.C.); amora@uma.es (Á.M.)

^{*} Correspondence: aciego@uma.es

Future works

Future developments

Web application

• Web app for **fcaR** to improve the usability by non-experts.

Some extensions

- Integrate association rules in the library (Luxenburger's basis).
- Logic for mixed attributes: new algorithms to compute bases of mixed implications, iterative closure algorithm. . .
- Other extensions: $\{\circ, +, -, i\}$.

Other algorithms

- Concept lattice (InClose, FastCbO, NextNeighbour)
- Canonical basis of implications
- Direct bases and minimal generators.
- Parallelization of the above.

Ad hoc algorithms for the computation of the fuzzy concept lattice

Preliminary results

	Concepts	Algorithm	Tests	PartialTests	Intents	Time
	<int></int>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	<u>131</u> 260	NextClosure	17 <u>641</u> 654	0	317 <u>549</u> 772	10.8
2	<u>131</u> 260	Fuzzy_FCb0	1 <u>791</u> 025	1 <u>791</u> 025	53 <u>730</u> 780	0.940
13	3 <u>131</u> 260	Fuzzy_InClose2	1 <u>958</u> 250	2 <u>019</u> 504	12 <u>691</u> 526	0.299
4	<u>131</u> 260	Fuzzy_InClose4	1 <u>865</u> 932	1 <u>927</u> 163	12 <u>496</u> 417	0.269
	<u>131</u> 260	Fuzzy_InClose5	<u>895</u> 211	<u>956</u> 442	7 <u>587</u> 263	0.203
6	<u>131</u> 260	Fuzzy_InClose7	<u>303</u> 520	<u>364</u> 751	4 <u>713</u> 802	0.163

THANK YOU VERY MUCH