
Formal Concept Analysis in R
Motivation, success stories and future work with the fcaR library

Domingo López-Rodríguez

Department of Applied Mathematics
Universidad de Málaga

Personal homepage: https://dominlopez.netlify.app
fcaR homepage: https://malaga-fca-group.github.io/fcaR

https://dominlopez.netlify.app
https://malaga-fca-group.github.io/fcaR

Motivation

2/29

Why to develop an R package for FCA?

• R, together with Python, are the two most widely used programming
languages in Machine Learning and Data Science.

• In R there are already libraries for association rule mining that have become
standard: arules.

• There is no library in R that implements the basic ideas and functions of FCA
and allows them to be used in other contexts.

Our purpose

• To help disseminate FCA as a knowledge discovery tool.
• To be able to perform rapid testing of new ideas, algorithms, etc., both from a

theoretical and practical point of view.
• Rapid prototyping of new solutions that can be integrated into more complex

computational systems.
• To enable the application of FCA to real problems: automatic reasoning and

recommender systems.

3/29

Design principles

Usability

• Direct execution of most classical algorithms (even in the fuzzy setting).
• Provide methods to operate on contexts, concept lattice and implications.
• Logic: include the SLFD logic to compute closure wrt implication sets.
• Interoperability:

• Read/write datasets in various formats (CSV, CTX, . . .).
• Import and export to arules.

• Allow reproducible research.
• Provide lots of documentation with examples.

Implementation

• Modern programming paradigms (object-oriented).
• Classes representing entities: contexts, lattices, implications. . .
• Allow for extensions: new algorithms, new ideas. . .
• Use base R for the interface, but bottlenecks implemented in C.

4/29

The fcaR library

5/29

Library availability

The package is in a stable phase in a repository on Github and on CRAN.
• Unit tests
• Vignettes with demos
• Status:

• lifecycle: stable
• CRAN version: 1.1.1
• downloads: ~19K

6/29

https://github.com/Malaga-FCA-group/fcaR

Classes and methods

Classes

Class name Use

"Set" A basic class to store a fuzzy set using sparse matrices
"Concept" A pair of sets (extent, intent) forming a concept for a given

formal context
"ConceptLattice" A set of concepts with their hierarchical relationship. It

provides methods to compute notable elements, sublattices
and plot the lattice graph

"ImplicationSet" A set of implications, with functions to apply logic and com-
pute closure of attribute sets

"FormalContext" It stores a formal context, given by a table, and provides
functions to use derivation operators, simplify the context,
compute the concept lattice and the Duquenne-Guigues basis
of implications

Table 1: Main classes found in fcaR.

7/29

Main methods

Formal Contexts
intent
extent
closure
clarify
reduce
standardize
find_concepts
find_implications

Concept Lattice
supremum
infimum
sublattice
meet_irreducibles
join_irreducibles
subconcepts
superconcepts
lower_neighbours
upper_neighbours

Implication Set
closure
recommend
apply_rules
to_basis

8/29

A remark on the Simplification Logic

SLFD Equivalence rules

[Ref]
A ⊇ B
A ⇒ B

[Frag]
A ⇒ B ∪ C

A ⇒ B
{A ⇒ B} ≡ {A ⇒ B ∖ A}

[Comp]
A ⇒ B, C ⇒ D
A ∪ C ⇒ B ∪ D

{A ⇒ B, A ⇒ C} ≡ {A ⇒ BC}

[Simp]
A ⇒ B, C ⇒ D

A(C ∖ B) ⇒ D ∖ B
A ⊆ C ⇒ {A ⇒ B, C ⇒ D} ≡ {A ⇒ B, A(C ∖ B) ⇒ D ∖ B}

A ⊆ D → {A ⇒ B, C ⇒ BD} ≡ {A ⇒ B, C ⇒ D}

The SLFD closure algorithm makes use of the above equivalence rules to
compute the closure X+ of a set X using a set of implications Σ, and return a
simplified Σ′ where the attributes in X+ do not appear, and such that:

{∅ ⇒ X} ∪ Σ ≡ {∅ ⇒ X+} ∪ Σ′

9/29

Practical example of the functionalities

Context and derivation operators

Concept lattice

Implications and logic

Conceptual scaling

10/29

Reproducible research with fcaR and interoperability
All classes have a to_latex() method to export in a suitable form to a
LATEX document:

• Tables (for formal contexts):

small medium large near far moon no_moon
Mercury × × ×
Venus × × ×
Earth × × ×
Mars × × ×
Jupiter × × ×
Saturn × × ×
Uranus × × ×
Neptune × × ×
Pluto × × ×

Table 2

11/29

• Listings (for concepts, implications. . .):

1: {no_moon} ⇒ {small, near}
2: {far} ⇒ {moon}
3: {near} ⇒ {small}
4: {large} ⇒ {far, moon}
5: {medium} ⇒ {far, moon}
6: {medium, large, far, moon} ⇒ {small, near, no_moon}
7: {small, near, moon, no_moon} ⇒ {medium, large, far}
8: {small, near, far, moon} ⇒ {medium, large, no_moon}
9: {small, large, far, moon} ⇒ {medium, near, no_moon}

10: {small, medium, far, moon} ⇒ {large, near, no_moon}

12/29

• Plots (for formal contexts, lattice):

({Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto} , ∅)

({Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto} , {moon})

({Jupiter, Saturn, Uranus, Neptune, Pluto} , {far, moon})

({Jupiter, Saturn} , {large, far, moon}) ({Uranus, Neptune} , {medium, far, moon})

({Mercury, Venus, Earth, Mars, Pluto} , {small})

({Earth, Mars, Pluto} , {small, moon})

({Pluto} , {small, far, moon})

({Mercury, Venus, Earth, Mars} , {small, near})

({Mercury, Venus} , {small, near, no_moon})({Earth, Mars} , {small, near, moon})

(∅, {small, medium, large, near, far, moon, no_moon})

13/29

• fcaR code can be embedded in RMD files (plain text + code + results) and
produce a presentation (such as this one!) or a complete paper:

CONTRIBUTED RESEARCH ARTICLE 4

Implications and logic

The knowledge stored in a formal context can also be represented as a set of implications, which are
expressions of the form A) B where A and B are sets of attributes or items, indicating that, for every
object in which the set of attributes A is present, also B is present. This interpretation is similar to the
one defined in data mining/machine learning over the so-named association rules. The confidence (a
well-known estimator of the rules’ quality) has value 1 in all the implications.

For instance
�0.5/P1

) {P4} is a valid implication in the previous example, having the following

interpretation: when the attribute P1 has degree at least 0.5 then we have P4 with degree 1.

The Duquenne-Guigues basis of implications (Guigues and Duquenne, 1986) is a set of valid
implications from which all other valid implications can be deduced. The Duquenne-Guigues basis in
our example is given by:

1: ?)
�0.5/P2, 0.5/P4

2:
�0.5/P2, P4

) {P2}

3:
�

P2, 0.5/P4

) {P4}
4:

�
P2, 0.5/P3, P4

) {P3}

5:
�0.5/P1, 0.5/P2, 0.5/P4

) {P2, P4}

6:
�0.5/P1, P2, P3, P4

) {P1}

In Cordero et al. (2002), the simplification logic, denoted as SLFD, was introduced as a method
to manipulate implications (functional dependencies or if-then rules), removing redundancies or
computing closures of attributes. This logic is equivalent to Armstrong’s Axioms (Armstrong, 1974),
which are well known from the 80s in databases, artificial intelligence, formal concept analysis, and
others. The axiomatic system of this logic considers reflexivity as the axiom scheme

[Ref]
A ◆ B
A) B

together with the following inference rules called fragmentation, composition and simplification,
respectively, which are equivalent to the classical Armstrong’s axioms of augmentation and, more
importantly, transitivity.

[Frag]
A) B [C

A) B
[Comp]

A) B, C) D
A [C) B [D

[Simp]
A) B, C) D

A [(C r B)) (D r B)

The main advantage of SLFD with respect to Armstrong’s Axioms is that the inference rules may be
considered as equivalence rules, (see the work by Mora et al. (2012) for further details and proofs), that
is, given a set of implications S, the application of the equivalences transforms it into an equivalent
set. In the package presented in this paper, we develop the following equivalences:

1. Fragmentation Equivalency [FrEq]: {A) B} ⌘ {A) B r A}.

2. Composition Equivalency [CoEq]: {A) B, A) C} ⌘ {A) B[C}.

3. Simplification Equivalency [SiEq]: If A ✓ C, then

{A) B, C) D} ⌘ {A) B, A [(C r B)) D r B}
4. Right-Simplification Equivalency [rSiEq]: If A ✓ D, then

{A) B, C) B [D} ⌘ {A) B, C) D}

Usually, many areas, the implications have always atomic attributes on the right-hand side. We
emphasize that this logic can manage aggregated implications, i.e. the implications’ consequents do not
have to be singletons. This represents an increase of the logic efficiency.

This logic removes attribute redundancies in some of the implications in the Duquenne-Guigues
basis presented before. Particularly, the implications with numbers 2, 3, 4, 5 and 6 are simplified to:

2: {P4}) {P2}
3: {P2}) {P4}
4:

�0.5/P3, P4

) {P3}
5:

�0.5/P1

) {P4}
6:

�0.5/P1, P3

) {P1}

One of the primary uses of a set of implications is computing the closure of a set of attributes, the
maximal fuzzy set that we can arrive at from these attributes using the given implications.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 10

Derivation operators

The methods that implement the derivation operators are named after them: intent(), extent()
and closure(). They can be applied on objects of type "Set", representing fuzzy sets of objects or
attributes:

> S <- Set$new(fc$objects, O1 = 1, O2 = 1)
> S
{O1, O2}
> fc$intent(S)
{P2 [0.5], P4 [0.5]}
> T <- Set$new(fc$attributes, P1 = 1, P3 = 1)
> T
{P1, P3}
> fc$extent(T)
{}
> fc$closure(T)
{P1, P2, P3, P4}

In addition, we can perform clarification on the formal context, by using fc$clarify(), giving:

FormalContext with 3 objects and 3 attributes.
P1 P3 [P2, P4]

O1 0 0.5 0.5
O4 0 1 0.5

[O2, O3] 0.5 0 1

The duplicated rows and columns in the formal context have been collapsed, and the corresponding
attributes and objects’ names are grouped together between brackets, e.g., [P2, P4].

Concept lattice

The command to compute the concept lattice for a "FormalContext" fc is fc$find_concepts(). The
lattice is stored in fc$concepts, which is of the "ConceptLattice" class.

> fc$concepts
A set of 8 concepts:
1: ({O1, O2, O3, O4}, {P2 [0.5], P4 [0.5]})
2: ({O1, O4}, {P2 [0.5], P3 [0.5], P4 [0.5]})
3: ({O1 [0.5], O4}, {P2 [0.5], P3, P4 [0.5]})
4: ({O1 [0.5], O2, O3, O4 [0.5]}, {P2, P4})
5: ({O1 [0.5], O4 [0.5]}, {P2, P3, P4})
6: ({O2, O3}, {P1 [0.5], P2, P4})
7: ({O2 [0.5], O3 [0.5]}, {P1, P2, P4})
8: ({}, {P1, P2, P3, P4})

In order to know the cardinality of the set of concepts (that is, the number of concepts), we can
use fc$concepts$size(), which gives 8 in this case. The complete list of concepts can be printed
with fc$concepts$print(), or simply fc$concepts. Also, they can be translated to LATEX using the
to_latex() method, as mentioned before.

The typical subsetting operation in R with brackets is implemented to select specific concepts from
the lattice, giving their indexes or a boolean vector indicating which concepts to keep. The same rules
for subsetting as in R base apply:

> fc$concepts[c(1:3, 5, 8)]
A set of 5 concepts:
1: ({O1, O2, O3, O4}, {P2 [0.5], P4 [0.5]})
2: ({O1, O4}, {P2 [0.5], P3 [0.5], P4 [0.5]})
3: ({O1 [0.5], O4}, {P2 [0.5], P3, P4 [0.5]})
4: ({O1 [0.5], O4 [0.5]}, {P2, P3, P4})
5: ({}, {P1, P2, P3, P4})

In addition, the user can compute concepts’ support (the proportion of objects whose set of
attributes contains the intent of a given concept) by means of fc$concepts$support().

> fc$concepts$support()
[1] 1.00 0.50 0.25 0.50 0.00 0.50 0.00 0.00

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 15

?

{dx ss}
�

0.33/FICAL 1

�
0.33/FICAL 1, dx ss

�
0.5/COSAS 2

�
0.5/COSAS 2, dx ss

 �
0.5/COSAS 2, 0.33/FICAL 1

�
0.5/COSAS 2, 0.33/FICAL 1, dx ss

Figure 4: Hasse diagram for a sublattice of the cobre32 formal context.

an individual) and returns the degree of the diagnosis attributes using the implications extracted from
the formal context as an inference engine.

Next, we use the NEXTCLOSURE algorithm to extract implications and compute the set of concepts,
using fc$find_implications().

The concept lattice is quite big (14706 concepts); therefore, it cannot be plotted here for space and
readability reasons. For this reason, we only plot a sublattice of small size in Figure 4.

There is an aggregate of 985 implications extracted. Let us compute the average cardinality of the
LHS and the RHS of the extracted rules:

> colMeans(fc$implications$size())
LHS RHS

2.417597 1.954146

Note that our paradigm can deal with non-unit implications, that is, where there is more than
one attribute in the RHS of the implication. This feature is an extension of what is usual in other
paradigms, for example, in transactional databases.

We can use the simplification logic to remove redundancies and reduce the LHS and RHS size of the
implications. The reason to do this is to decrease the computational cost of computing closures:

> fc$implications$apply_rules(rules = c(�simplification�, �rsimplification�))
> colMeans(fc$implications$size())

LHS RHS
1.998308 1.557191

We can see that the average cardinality of the LHS has been reduced from 2.418 to 1.998 and that
the one of the RHS, from 1.954 to 1.557.

With the simplified implication set, we can build a recommender system by simply wrapping the
recommend() method inside a function:

> diagnose <- function(S) {
+
+ fc$implications$recommend(S = S,
+ attribute_filter =
+ c(�dx_ss�, �dx_other�))
+
+ }

This function can be applied to "Set"s that have the same attributes as those of the formal context.
The attribute_filter argument specifies which attributes are of interest, in our case, the diagnosis
attributes.

Let us generate some sets of attributes and get the recommendation (diagnosis) for each one:

> S1 <- Set$new(attributes = fc$attributes,
+ COSAS_1 = 1/2, COSAS_2 = 1, COSAS_3 = 1/2,
+ COSAS_4 = 1/6, COSAS_5 = 1/2, COSAS_6 = 1)
> diagnose(S1)

dx_ss dx_other
1 0

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859 14/29

Integration with arules
arules is a standard in R to compute and manage (unit) association rules.
The implications computed or simplified using fcaR can be exported to the arules
format.

• Since, in many cases, other people know about association rules mining and its
terminology, it is easy to introduce FCA and its methods with this integration.

15/29

Where to find help

https://malaga-fca-group.github.io/fcaR/

16/29

https://malaga-fca-group.github.io/fcaR/

Stories of success

17/29

Where have we used fcaR?

The ways in which we have used fcaR so far are:
• From a theoretically point of view:

• Rapid development and checking of new ideas: fcaR allows for a fast iteration
of the cycle theory - practice - theory.

• With practical purposes:
• Use the simplification logic for automated reasoning and creation of

recommender systems.
• Explore the concept lattice in real-world problems to model and extract

knowledge.

18/29

Recommender systems

19/29

Mixed attributes

Used for knowledge spaces and learning paths (IJCIS, submitted)

20/29

0

100

200

300

0 100 200 300

|Σ|

|Σ
′ |

Version

(v1)

(v2)

21/29

Clustering of implications applied to Social Network Analysis

22/29

Collaborations

• Construction companies: Integration of FCA-based recommendation systems
within the Building Information Modelling (BIM) methodology.

23/29

• Cybersecurity company: Creation of an ontology of malware threats.

{Sophos = bckdr−rxm} ⇒ {Avast = metasploit−g, Kaspersky = heur:downloader.os.agent.jy}
24/29

• Other research groups:

a. Application of fuzzy FCA to neuroimage processing and understanding.
b. Use of recommender systems and logic tools to analyse and reduce the Urban

Heat Island (UHI) effect for urban planning.
c. FCA for concept drift detection in online unsupervised machine learning.

25/29

Future works

26/29

Future works

We are exploring several lines:
• Improve the usability by non-experts.
• Better integration for external tools (both in R and other languages or via

web).
• Develop new algorithms and extensions.

27/29

Future developments

Web application

• Web app for fcaR (demo)

Some extensions
• Integrate association rules in the library (Luxenburger’s basis).
• Logic for mixed attributes: new algorithms to compute bases of mixed

implications, iterative closure algorithm. . .
• Other extensions: {◦, +, −, ı}.

Other algorithms

• Concept lattice (InClose, FastCbO, NextNeighbour)
• Canonical basis of implications
• Direct bases and minimal generators.
• Parallelization of the above.

28/29

THANK YOU VERY MUCH

29/29

	Motivation
	The library
	Stories of success
	Future works
	THANK YOU VERY MUCH

